生物质气化技术研究进展

麦电网 来源:《河南电力》 作者:高洪涛 2020-02-21

所属频道: 技术 关键词:

东北地区秸秆能源化利用现状调查与前景分析

秸秆气固燃料二元联产的可行性与经济性研究

我国炉排式垃圾焚烧炉耐火材料应用现状

麦电网讯:摘要:叙述了生物质气化技术的分类、原理、气化炉特点。介绍 了生物质气化技术在国内外的发展现状,阐明了生物质气化技术需要解决的问题,提出了我国生物质气化技术的发展方向。


1、前言


能源和环境问题已成为全球关注的焦点,随着能源消耗的迅速增长,化石燃料的大量使用带来了严重的环境污染和生态破坏,再加上常规能源如煤、石油、天然气等资源量的日益减少,开发洁净的可再生能源成为了可持续发展的迫切需要。与此同时,生物质能在可再生能源中,是地球上唯一能够储存和可运输的清洁能源,资源量大,分布广,开发潜力巨大。


生物质能要真正成为矿物燃料的替代能源,其关键是要将能量密度低的低品位的生物质能转变成高品位能源。如何有效地将生物质转化为洁净、高效的高品位能源,是该领域目前的主要研究课题。当前,生物质能转化技术主要包括生物质气化、液化、固化以及直接燃烧技术。生物质能气化技术就是其中重要的手段之一。


中国由于地域广阔,生物质资源丰富而电力供应相对紧张,生物质气化发电具有较好的生存条件和发展空间,所以在中国大力发展生物质气化发电技术可以最大限度地体现该技术的优越性和经济性。


2、生物质气化原理与工艺


2.1生物质气化原理


生物质气化是指生物质原料(薪柴、锯末、麦秸、稻草等)压制成型或经简单的破碎加工处理后,在欠氧条件下,送入气化炉中进行气化裂解,得到可 燃气体并进行净化处理而获得产品气的过程。其原 理是在一定的热力学条件下,借助于部分空气(或 氧气)、水蒸气的作用,使生物质的高聚物发生热 解、氧化、还原、重整反应,热解伴生的焦油进一步热 裂化或催化裂化为小分子碳氢化合物,获得含 CO、H2 和 CH4 的气体。由于生物质由纤维素、半纤维素、木质素、惰性灰等组成,含氧量和挥发分高,焦炭的活化性强,因此,生物质与煤相比,具有更高的活性,更适合气化。生物质气化主要包括气化反应、合成气催化变换和气体分离净化过程。气化转化的重点为气体组分与产率的调整与控制。生物质气化与热解不同,气化过程需要气化介质(常为空气),气体热值较低,一般为 4~6 MJ /m3;热解过程通常不需要气化剂,其产物是液、气、炭 3 种产品,气体热值较高,一般为 10~15 MJ /m3。气化过程伴随有热解过程,热解是气化的第一步。生物质气化的目的是得到洁净的产品气,因此要采 用催化剂来抑制或消除热解反应中产生的焦油。


2.2 生物质气化技术分类


①根据气化反应的工艺分一级气化、二级气化和多级气化。多级气化即固定床、流化床及催化热解炉等气化炉的不同组合。


②根据气化反应器的类型分固定床气化、移 动床气化、流化床气化、气流床气化和旋风分离床气 化。


③根据气化反应器的压力分常压气化(0.11 ~0.15 MPa)、加 压 气 化(0.15 ~ 2.50 MPa)和超临界气化(压力 ≥22.05 MPa)。


④ 根据加热机理分自热气化、配热气化和外加热源气化,常用自热气化。


⑤ 根据气化介质的种类分空气气化、氧气气化、水蒸气气化、CO2 气化、混合介质气化(如空气 水蒸气气化)和空气加氢气化。


⑥ 根据催化剂使用情况分非催化气化和催化气化(镍基催化剂气化、钌基催化剂气化、碳酸盐催化剂气化、金属氧化物催化剂气化等)。


典型的气化工艺有以下3种:干馏工艺、快速热解工艺、气化工艺。其中前两种生物质气化工艺适用于木材或木屑的热解;后一种适用于农作物(如玉米、棉花等)秸秆的气化。


生物质气化技术的一般工艺过程如图1所示,其主要有四大组成系统,分别为进料系统、气化反应器(气化炉)、气化气体净化系统和气化气体处理系统(如发电系统)。进料系统包括生物质进料、空气进料、水蒸气进料及其控制。气化气体净化系统主要是除去产出气体中的固体颗粒、可冷凝物及焦油,常用设备有旋风分离器、水浴清洗器及生物质过滤器。后处理系统主要是气化气进一步转化利用的装置,诸如发电、制取液体燃料等装置。

图1 生物质气化工艺一般流程.png

图1 生物质气化工艺一般流程


3、生物质气化关键技术


气化炉是生物质气化系统中的核心设备,生物质在气化炉内进行气化反应,生成合成气。生物质气化炉可以分为固定床气化炉、流化床气化炉、气流床气化炉(EF)及等离子体气化炉(Plasma)等类型。


中国对各种气化方式都有研究,已完成了多种气化炉的研制,目前已使用的气化炉有上吸式、下吸式、敞口式和流化床等。从原理上讲,各种气化炉都可以用于气化发电,但目前研究完成并正常运转的主要有三种,即敞口下吸式,下吸式及循环流化床,发电功率可以从几千瓦到几千千瓦,这为气化发电技术的进一步发展提供了条件。


3.1生物质固定床气化炉


固定床是一种传统的气化反应器,其运行温度一般在1000℃左右。固定床气化炉中气化反应是在一个相对静止的物料床层中进行,即物料相对于气流来说,是处于静止状态。物料在炉内基本上是有层次的分为四个阶段,即干燥阶段、热解阶段、燃烧阶段、还原阶段。固定床气化炉的炉内反应速度较慢。根据炉内气化剂的流动方向,可将固定床气化炉分为四类:上吸式、下吸式、横吸式和开心式。


下面对上吸式固定床生物质气化炉的运行工艺作简单介绍

面对上吸式固定床生物质气化炉的运行工艺作简单介绍.png

在上气式固定床气化炉中,生物质原料从气化炉的上部的加料装置送入炉内,整个料层由炉膛下部的炉栅支撑。气化剂从炉底下部的送风口进入炉内,由炉栅缝隙均匀分布并渗入料层底部区域的灰渣层,气化剂和灰渣进行热交换,气化剂被预热,灰渣被冷却。气化剂随后上升至燃烧层,在燃烧层气化剂和原料中的碳发生氧化反应,放出大量的热量。可使炉内温度达到1000℃,这一部分热量可维持气化炉内的气化反应所需热量。气流接着上升到还原层,在燃烧层生成的CO2还原成CO;气化剂中的水蒸气分解,生成H2和CO2这些气体与气化剂中未反应部分一起继续上升,加热上部的原料层,使原料层发生热解,脱除挥发分,生成的焦炭落人还原层。生成的气体继续上升,将刚入炉的原料预热、干燥后,进入气化炉上部,经气化炉气体出口引出。


固定床气化炉的优点:气化炉结构简单、投资少、运行可靠、操作比较容易,对原料的种类及粒度要求不高。缺点:固定床气化炉通常产气量比较小,多用于小型气化站、小型热电联产或户用供气,不适合大规模的生产。


3.2流化床气化炉


流化床燃烧是一种先进的燃烧技术,应用于生物质燃烧上已获得了成功,但是用于生物质气化仍是一个新课题。与固定床相比。流化床没有炉栅,一个简单的流化床由燃烧室、布风板组成,气化剂通过布风板进人流化床反应器中。按气固流动特性不同,将流化床分为鼓泡流化床和循环流化床,如图4所示。鼓泡流化床气化炉中气流速度相对较低,几乎没有固体颗粒从流化床中逸出。而循环流化床气化炉中流化速度相对较高,从流化床中携带出的颗粒在通过旋风分离器收集后重新送人炉内进行气化反应。流化床气化炉有良好的混合特性和较高的气固反应速率。


图4 流化床气化炉.png

图4 流化床气化炉


流化床气化炉的优点:温度稳定均匀;使用燃料颗粒很细小,传热面积大;气化效率高;适用于连续运转,适合大规模的商业应用。已被粉碎的原料和被加压的气化剂(氧气或水蒸气)从塔顶同时进入气化炉。塔顶部的湍流火焰燃烧部分原料,为整个气化过程提供足够的热量,气化炉内的温度达到1300 ?C。


在生物质气化过程中,流化床首先通过外加热到运行温度,床料吸收并贮存热量。鼓人气化炉的适量空气经布风板均匀分布后将床料流化,床料的湍流流动和混合使整个床保持一个恒定的温度当合适粒度的生物质燃料经供料装置加入到流化床中时,与高温床料迅速混合,在布风板以上的一定空间内激烈翻滚,在常压条件下迅速完成干燥、热解、燃烧及气化反应过程,使之在等温条件下实现能量转化,从而生产出需要的燃气。床料本身的较高的热容量像一个热量词速器,可使生物质气化炉在停炉一整夜后无需外在热量情况下重新开车。由于床料热容大,即使水分含量较高的燃料也可直接气化。通过控制运行参数可使流化床床温保持在结渣温度以下,床层只要保持均匀流化就可使床层保持等温,这样可避免局部燃烧高温。流化床气化炉气化强度高,人炉的燃料量及风量可严格控制,非常适合于大型的工业供气系统,且燃气的热值可在一定的范围内任意调整。因此,流化床反应器是生物质气化转化的一种较佳选择,特别是对于灰熔点较低的生物质。


3.3固定床气化炉与流化床气化炉性能比较


固定床气化炉与流化床气化炉有着各自的优缺点和一定的适用范围。例如,逆流式固定床气化反应器结构简单、操作便利,运行模式灵活,但是只能适用于中小规模生产;而流化床气化反应器虽然适合于工业化、大型化.但设备复杂、投资大,而且需要一个相对稳定的对产品气的市场需求。下面主要从工业技术及运行情况、使用的原料、能量利用和转换、环境效益和经济性五个方面对流化床和固定床气化炉进行比较。


3.4气流床气化炉


已被粉碎的原料和被加压的气化剂(氧气或水蒸气)从塔顶同时进入气化炉。塔顶部的湍流火焰燃烧部分原料,为整个气化过程提供足够的热量,气化炉内的温度达到1300 ?C。气流床的特点:合成气出炉的温度可达1300 ?C,大部分焦油可在半焦气化过程中裂化,出炉的合成气中几乎不含焦油;气化炉壁上的灰融物可当作熔渣除去。


3.5等离子体气化炉


原料从塔顶进入气化炉,接触到常压、温度为500~1500 ?C的由电生成的等离子体后,原料中有机物转化为高质量的合成气,无机物变成玻璃化的惰性熔渣。这种炉的气化效率很高,得到不含焦油的合成气。等离子弧也可以用于净化合成气。


4、生物质气化发电技术应用及国内外发展现状


4.1生物质气化发电技术在国外的发展及现状


生物质气化及发电技术在发达国家已受到广泛重视,如奥地利、丹麦、芬兰、法国、挪威、瑞典和美国等国家生物质能在总能源消耗中所占的比例增加相当迅速。奥地利成功地推行了建立燃烧木材剩余物的区域供电站的计划,生物质能在总能耗中的比例由原来大约2%~3%增到目前的25%。到目前为止,该国已拥有装机容量为1~2MWe的区域供热站80~90座。瑞典和丹麦正在实施利用生物质进行热电联产的计划,使生物质能在转换为高品位电能的同时满足供热的需求,以大大提高其转换效率。一些发展中国家,随着经济发展也逐步重视生物质的开发利用,增加生物质能的生产,扩大其应用范围,提高其利用效率。菲律宾、马来西亚以及非洲的一些国家,都先后开展了生物质能的气化、成型固化、热解等技术的研究开发,并形成了工业化生产。


生物质气化的发电技术主要有以下三种方法:带有气体透平的生物质加压气化、带有透平或者是引擎的常压生物质气化、带有Rankine循环的传统生物质燃烧系统。传统的BIGCC技术包括生物质气化、气体净化、燃气轮机发电及蒸汽轮机发电。由于生物质燃气热值低(约5021kJ/m3),炉子出口气体温度较高(800℃以上),要使BIGCC具有较高的效率,必须具备两个条件.一是燃气进入燃气轮机之前不能降温,二是燃气必须是高压的。这就要求系统必须采用生物质高压气化和燃气高温净化两种技术才能使BIGCC的总体效率较高(40%)目前欧美一些国家正开展这方面研究,如美国Battelle(63MWe)和夏威夷(6MWe)项目.欧洲英国(8MWe)、瑞典(加压生物质气化发电4MWe)、芬兰(6Mwe)以及欧盟建设3个7~12Mwe生物质气化发电BIGCC示范项目,其中一个是加压气化,两个是常压气化。但由于焦油处理技术与燃气轮机改造技术难度大.存在的许多问题(如系统未成熟,造价很高)限制了其应用推广。以意大利12Mwe的BIGcC示范项目为例,发电效率约为31.7%但建设成本高达25000元/kW,发电成本约1.2元/(kW·h).实用性很差。近利用了生物质原料固有的高反应特性。生物质的气化强度超过l46000kg/(h·m).而其他气化系统的气化强度通常小于1000kg/(h·1TI)。Battelle气化工艺的商业规模示范建在弗蒙特州的柏林顿McNeil电站,该项目的一期工程.用Battelle技术建造日产200t燃料气的气化炉,在初始阶段生产的燃料气用于现有的Mc—Neil电站锅炉。二期工程安装一台燃气轮机来接受从气化炉来的高温燃气,组成联合循环。该气化设备于1998年完成安装并投入运行。


大型生物质气化循环发电系统包括原料预处理、循环流化床气化、催化裂解净化、燃气轮机发电、蒸汽轮机发电等设备,适合于大规模处理农林废物。


除了将生物质气化用于发电之外,欧共体进而开展了生物质气化合成甲醇、氨的研究工作。1998年,欧共体建立了四个规模在4.8~12.1t/d之间不等的生年欧美开展了其它技术路线的研究,如比利时(2.5MWe)和奥地利(TINA,6MWe)开展的生物质气化与外燃式燃气轮机发电技术,美国的史特林循环发电等,但技术仍未成熟,成本较高。


美国在利用生物质能发电方面处于世界领先地位美国建立的Battelle生物质气化发电示范工程代表生物质能利用的世界先进水平,生产一种中热值气体,不需要制氧装置,此工艺使用两个实际上分开的反应器:(1)气化反应器,在其中生物质转化成中热值气体和残炭;(2)燃烧反应器,燃烧残炭并为气化反应供热。两个反应器之间的热交换载体由气化炉和燃烧室之间的循环沙粒完成。


这种Battelle工艺与传统的气化工艺不同,它充分物质气化合成甲醇的示范工厂。其生物质气化装置均为流化床气化炉,使用氧气或者水蒸气作气化剂,产出中热值燃气。在滤出焦油和杂质,脱除c02、N2、cH.以及其他碳氢化合物之后,在一定压力下,使CO和H20反应生成H2,再将c0和H2以1:2的比例混合导人合成塔,加入催化剂,合成甲醇德国已广泛使用含1%~3%甲醇的混合汽油,内燃机结构无须进行较大改动,其输出功率近似于燃用纯汽油的内燃机的输出功率。目前,生物质气化合成甲醇的技术已经成熟,只是其产品的经济性还不能与石油、煤化工相竞争芬兰的一家化肥厂在世界上首次采用生物质气化燃气合成氨取得成功。干生物质(木屑)气化产出的气体经净化后可得到CO和H2的混合气,再将此混合气与N2反应合成氨。


4.2生物质气化技术在国内的发展与现状


我国对生物质气化技术的深入研究始于上世纪8O年代。经过2O年的努力,我国生物质气化技术日趋完善。目前已经成功开发出将生物质转化成可燃气体的技术,大多采用固定床气化,如河北的ND系列、山东的XFL系列、广州的GSQ-110型和云南QL50、60型;建成的多个生物质气化的供热、传热系统,应用在不同场合取得了一定的社会、环保和经济效益。


与发达国家生物质气化技术相比,国内生物质气化装置基本上是以空气为气化剂的常压固定床气化技术,其技术上的问题主要是:燃气质量不稳定且燃气热值低;CO含量过多,不符合城市居民使用燃气标准;燃气净化及焦油的处理有待于改进,国内已建成的生物质气化系统,对燃气的净化及焦油的处理大多采用水洗物理方法,净化效率不高,气体中焦油含量较高,既造成能源浪费,又加快设备损耗;整套装置尚缺乏长时间的运行试验,可靠性及使用寿命尚待确定;集中供气系统质量标准与施工规范尚未形成,难以实现气化技术的工程化。上述因素制约了生物质气化技术在我国的商业化推广。


早在上世纪6O年代,我国就开始了生物质气化发电的研究,研制出了样机并进行了初步推广,还曾出口到发展中国家,后因经济条件限制和收益不高等原因停止了这方面的研究工作。近年来,随着乡镇企业的发展和人民生活水平的提高,一些缺电、少电地方迫切需要电能;其次是环境问题,丢弃或焚烧农业废弃物将造成环境污染,生物质气化发电可以有效地利用农业废弃物。所以,以农业废弃物为原料的生物质气化发电又逐渐得到人们的重视。


目前,我国的生物质发电技术的最大装机容量与国外相比,还有很大差距。在现有条件下研究开发与国外相同技术路线的BIGCC系统,存在很大困难。利用现有技术,研究开发经济上可行、效率较高的系统,是目前发展生物质气化发电的一个主要课题,也是发展中国家今后能否有效利用生物质的关键。


5、在中国发展BGPG所面临问题的解决办法


5.1焦油裂解技术及废水处理工艺


焦油裂解是彻底解决二次污染的办法。只有最大限度地减少焦油的数量,才能避免废水的产生。当然,采用任何工艺都很难保证完全没有焦油,所以采用一定的水作为冷却和清洗还是必要的,因此废水的处理与循环使用的研究也是必不可少的。只有解决二次污染的问题,生物质气化发电技术才能与其他技术进行平等的竞争。


以目前的焦油去除技术来看,生物质气化燃气中焦油的处理方法分为湿法、干法及裂解等三种。湿法就是利用水洗燃气,使之快速降温从而达到焦油冷凝并从燃气中分离的目的水洗除焦法存在能量浪费和二次污染现象,净化效果只能勉强达到内燃机的要求;干法采用过滤技术净化燃气的方法。裂解法分为热裂解法和催化裂解法两种。


(1)湿法去除焦油


湿法去除焦油是生物质气化燃气净化技术中最为普通的方法。它包括水洗法、水滤法,水洗法又分为喷淋法和吹泡法。


湿法净化系统采用多级湿法联合除焦油。系统成本较低.操作简单.生物质气化技术初期的净化系统一般均采用这种方式。这种方式有以下缺点:含焦油的废水外排易造成环境污染I大量焦油不能利用.造成能源损失;实际净化效果并不太好鉴于国情,我国目前的生物质气化燃气净化技术主要是以湿法除焦油为主.国内一些科研单位已研究出符合中国国情的湿法燃气技术设备。


(2)干法去除焦油


干法净化燃气是为避免湿法净化带来的水污染问题.采用过滤技术净化燃气的方法。过滤法除焦油是将吸附性强的材料(如活性炭等)装在容器中,使可燃气穿过吸附材料.或者使可燃气穿过装有滤纸或陶瓷芯的过滤器,把可燃气中的焦油过滤出来。可根据生物质燃气中所含杂质较多的特点,采用多级过滤的净化方法。但实际过程中.由于其净化效果不好.焦油沉积严重且沾附焦油的滤料难以处理,几乎没有作为单独的净化装置使用,多与其他净化装置连用。


(3)裂解法去除焦油


裂解净化技术是将生物质的燃气中焦油利用某种方法使其裂解为可利用的小分子可燃气体。其方法细分为热裂解、催化裂解及电裂解。热裂解法在1100℃以上才能得到较高的转换效率.在实际应用中实现较困难;若在气化过程中加入裂解催化剂,即使在750~900℃温度下,也能将绝大部分焦油裂解成小分子的碳氢化合物。催化裂解法可将焦油转化为可燃气,既提高系统能源利用率,又彻底减少二次污染。从20世纪80年代起,生物质气化过程中加入催化剂而得到无焦油燃气在国外已引起广泛关注.并已投入商业运行。


5.1发电循环的改进及系统效率的提高


目前生物质气化效率偏低,产率偏低,燃气中可燃气体浓度低。生物质直接气化、超临界气化虽然可获得高的可燃气体浓度,但是技术路线复杂,对于资源分散的生物质不易实现工业化生产,从而使成本提高。相关实验的研究应加大力度,以寻找提高效率的方法。另外,由于生物质气化技术投资在辅助系统成本远远大于气化系统运行的成本,从而使得气化气的成本较高,与现有的煤气相比优势不明显。因此,降低气化气的利用成本是势在必行的。要降低气化气的利用成本,可以从以下两个方面考虑:一是尽可能提高气化气的热值;二是扩大气化气的利用的规模,如在气化发电中就可以扩大发电规模,以降低发电成本。


从纯技术的角度看,生物质IGCC可以有效地提高BGPG的总效率,但由此可以看出于焦油处理技术与燃气轮机技术的限制,在中国研究发展生物质IGCC仍比较困难。所以如何利用现已较成熟的技术,研制开发在经济上可行,而效率又有较大提高的系统,是目前发展BGPG的一个主要课题.


6、结论


气化发电是分散利用生物质能的有效手段,比较适合于中国当前的经济水平和发展现状。中国的生物质具有较好的技术基础,只要解决二次污染,即具备与其他常规发电技术竞争的条件。为了发展并尽快推广生物质气化技术,目前应该进行三方面的工作:一是研究焦油处理技术,彻底消除二次污染;二是改进气化发电技术与系统,提高整体效率,进一步降低发电成本;三是制定保证政策,鼓励生物质气化发电技术的应用,完善相关的配套技术和设施,并扩大产业规模,做到真正高效地利用生物质能。


参考文献:


[1]马隆龙,吴创之,孙立. 生物质气化技术及其应用 [M ]. 北京:化学工业出版社,2003


[2]Chen G,Spliethoff H,Andries J. Catalytic pyrolysis of biomass for hydrogen2rich fuel gas production[J ]. Ener2 gy Conversion and Management,2003


[3]袁振宏,吴创之,马隆龙. 生物质能利用原理与技术 [M ]. 北京:化学工业出版社,2005 .


[4]刘荣厚,牛卫生,张大雷. 生物质热化学转化技术 [M ]. 北京:化学工业出版社,2005 .


[5]陈冠益,李强,Spliethoff H,等. 生物质热解气化制取 氢气 [J ]. 太阳能学报,2004


[6]W iebren de J. Nitrogen compounds in pressured fluid2 ized bed gasification of biomass and fossil fuels[M ]. Rotterdam(Netherlands):DelftUniversity of Technolo2 gy Press,2005 .


[7]吕友军,冀承猛,郭烈锦. 农业生物质在超临界水中 气化制氢的实验研究 [J ]. 西安交通大学学报,2005


[8]任辉,张荣,王锦凤,等. 废弃生物质在超临界水中转 化制氢过程的研 究 [ J ]. 燃料化学学报,2003


[9]Bridgwater A V. Progress in thermochemical biomass conversion [M ]. Bodmin(UK):MPG Book Ltd .,2001 .


[10]Brown R C . Hydrogen from biomass gasification [ R ]. DesMoines:Iowa Academy of Sciences,2003 .


[11]Reed B T,Gaur S . A survey of biomass gasification 2000[M ]. Golden(USA):The Biomass Energy Foun2 dation Press,2000 .


[12]赵先国,常杰,吕鹏梅,等. 生物质流化床富氧气化实 验研究 [J ]. 燃料化学学报,2005


[13]吴正舜,马隆龙,吴创之. 下吸式气化炉中生物质气 化发电的运行与测试 [ J ].煤炭转化,2003


[14]吴创之,徐冰燕,罗曾凡,等. 生物质循环流化床气化 的理论及应用 [J ]. 煤气与热力,1995


[15]吴创之,徐冰燕,罗曾凡,等. 生物质中热值气化技术 的分析及探讨 [ J ]. 煤气与热力,1995


[16]蒋剑春,应浩,戴伟娣,等. 生物质流态化催化气化技 术工程化研究 [J ]. 太阳能学报,2004


[17]张秀梅,陈冠益,孟祥梅,等. 催化热解生物质制取富 氢气体的研究 [J ]. 燃料化学学报,2004


[18]王建楠,胡志超,等.我国生物质气化技术概况与发展.农业工程学报,2010


[19]赵增立,李海滨,吴创之,等. 生物质等离子体气化研 究 [J ]. 太阳能学报,2005


[20]朱锡锋,Venderbosch R H. 生物质热解油气化试验研 究 [J ]. 燃料化学学报,2004\\


[21]侯斌,吕子安,李晓辉,等. 生物质热解产物中焦油的 催化裂解 [J ]. 燃料化学学报,2001


[22]王智微,唐松涛,苏学泳,等. 流化床中生物质热解气 化的模型研究 [J ]. 燃料化学学报,2002


[23]段佳,罗永浩,等.生物质气化再燃特性实验研究.燃料化学学报,2007


[24]郭东彦,伊晓路,徐健,等. 生物质循环流化床循环特 性研究 [J ]. 可再生能源,2004


[25]张晓东,周劲松,骆仲泱,等. 生物质中热值气化技术 中试实验 [J ]. 太阳能学报,2003


[26]方梦祥,施正展,王树荣,等. 双流化床物料循环系统 的试验研究 [ J ]. 农业机械学报,2003


[27]米铁,唐汝江,陈汉平,等. 生物质气化技术及其研究 进展 [J ]. 化工装备技术,2005


[28]杨海平,米铁,陈汉平,等. 生物质气化中焦油的转化 方法 [J ]. 煤气与热力,2004


[29]应浩,蒋建春.生物质气化技术及开发应用研究进展.林产化学与工业,2005 [30 ] 董玉平,郑波,等.中国生物质气化技术的研究和发展现状.山东大学学报,2007


[31]邱钟明,陈砺.生物质气化技术研究现状与发展前景.可再生能源,2002


[32]吴亭亭,修同斌,魏敦崧,等. 生物质 -二氧化碳气化 反应动力学研究 [J ]. 煤气与热力,1993


[33]陈冠益,高文学,等.生物质气化技术研究现状与发展.煤气与热力,2006


[34]顾尧臣、费叔明、张声俭:稻谷煤气作为煤气机燃料的研究和实验。《粮食与饲料工业》,No.6,1988.